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Cellular patterns with boundary forcing 

By S. ZALESKI 
Groupe de Physique des Solides de l’Ecole Normale Supbrieure, 

24 rue Lhomond, 75231 Paris CEDEX 05 

(Received 20 December 1983) 

In  this paper we investigate some effects of a boundary forcing on 2-dimensional 
cellular patterns in instabilities above threshold. Boundary forcing is modelled as an 
inhomogeneous boundary condition on the slowly varying amplitude A ,  i.e. A = h ei$o 
on boundaries. The relevant range is h = O ( d ) ,  where E is the relative distance to the 
linear-instability threshold. A wavenumber-selection mechanism then occurs, 
resulting in a band of selected wavenumbers of width proportional to A.  For large 
values of he-: it  is shown that no stationary solution exists outside the band of 
Eckhaus-stable wavenumbers (Eckhaus 1965). For finite geometries of size L,  a 
nonlinear analogue of ‘ quantization ’ of modes is investigated. The amplitude 
equation (equivalent to a space-dependent Ginzburg-Landau model) is analysed by 
an expansion in powers of exp ( -  L/[ ) ,  where [ is the coherence length. The range 
A = O ( F )  is also investigated. A correction to previous theories of wavenumber 
selection through boundaries (Cross, Daniels, Hohenberg & Siggia 1 9 8 3 ~ ;  Pomeau 
& Zaleski 1981) is calculated. The latter results are general and assume only the 
existence of a higher-order stationary amplitude equation, which is recast in a form 
consistent with its boundary conditions. 

1. Introduction 
The pattern of cellular structures above the linear-instability threshold has been 

the subject of a number of investigations. Cellular structures arise in some spatially 
periodic instabilities, of which the most studied one is the Rayleigh-BBnard thermo- 
convective instability. Centrifugal instability of Taylor-Couette flow is another 
example. For such instabilities, the laminar or purely conducting state of the fluid 
is unstable slightly above the instability threshold for a finite range of wavenumbers 
of width E:, where E is the small relative distance to threshold. The problem then arises 
of determining which wavevector will be observed. Moreover, one would like to know 
more precisely the perturbed velocity and/or temperature fields when nonlinear terms 
and lateral boundary conditions are fully taken into account. This problem for the 
case of perfectly parallel rolls or vortices has been extensively investigated. The flow 
is then two-dimensional and the perturbation fields depend only on two coordinates, 
the radial and axial coordinates r and z for Taylodouet te  flow, or a horizontal 
coordinate x and the vertical one z for Rayleigh-BBnard instability. 

In  the present work we investigate the case where some external effect generates 
lateral rolls and/or vortices, independently of the main instability mechanism in the 
bulk. This boundary forcing is a well-known feature in the Taylor-Couette problem. 
I n  the following we show that boundary forcing has two main effects: i t  broadens 
the extent of the selected wavenumbers, and increases the number of modes near 
threshold. These results might have been expected from previous results, but are new 
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FIGITRE 1 .  The imperfect bifurcation. The variation of the modulus of the slowly varying amplitude 
IAI, in the middle of the cell is plotted versus the control parameter tl,. In  the perfect case (thin 
line) ( e . g .  A = 0 on boundarirs) a sharp bifurcation occurs. It is replaced by a continuous increase 
of ] A / ,  in the imperfect case (thick line). 

for the range of parameters investigated. Moreover, the intuitive notion of 
‘quantization’ of modes in a finite box is made more explicit through nonlinear 
calculation. 

Experimental use of boundary forcing is rather widespread. I n  Taylor-Couette flow 
non-rotating endcaps produce vortices, which originate in the Ekman boundary 
layers on the walls. It was shown by Benjamin (1978a, b) and Mullin (1982) that such 
a configuration produces an ‘ imperfect ’ bifurcation near threshold : the end vortices 
exist for any Taylor number, and induce vortex motion in the bulk below the linear 
threshold (figure 1).  For large aspect ratios a large multiplicity of modes is observed 
(Mullin 1982). Snyder (1969) investigated wavenumber selection existing near 
threshold in Taylor-Couette flow. He found that modes within a broad band 
of wavenumbers could be stable near threshold, apparently covering the whole 
band of wavenumbers that can be found stable when boundary conditions are 
accounted for. 

I n  Rayleigh-BBnard convection various devices allow the forcing of convective 
motion. A heat flux can be imposed on the lateral boundaries, thus producing a 
destabilizing horizontal temperature gradient, and subcritical rolls. Such a condition 
was produced by Croquette & Pocheau (1983) with the help of a wire fixed on the 
lateral wall of the convective fluid layer. Subcritical convective motion was produced 
by Wesfreid, Berge & Dubois (1979). These latter authors conducted experiments 
where the lower plate of the cell was divided in several thermally independent parts 
maintained at different temperatures. Thus supercritical conditions could be produced 
on the extent of a pair of rolls near the lateral boundaries. This is equivalent to a 
boundary forcing when heating is subcritical in the remainder of the box. Finally 
Wesfreid & Croquette (1980) produced forced ascending flow in the bulk of the 
convection cell. This type of perturbation also induces rotation of nearby rolls. 



Cellular patterns with boundary forcing 103 

Other features, like time-dependent heating or Rayleigh-BBnard convection 
between non-horizontal plates, can produce the equivalent of such forcing terms 
(Cross, Hohenberg & Liicke 1983). The problem of a heat flux through lateral 
boundaries was studied theoretically by Daniels (1977, 1978), Hall & Walton (1977) 
and Stewartson & Weinstein (1979). The effect of Ekman vortices on Taylor-Couette 
flow was also discussed by Walton (1980). This author considered the case of a small 
difference in the angular velocities of the concentric cylinders. However, the limit of 
large aspect ratio was not investigated in connection with the wavenumber-selection 
problem. 

The effect of various boundary conditions on wavenumber selection was investigated 
recently (Cross et al. 1983a; Pomeau & Zaleski 1981; Potier Ferry 1983; Kramer & 
Hohenberg 1984; Zaleski 1984). When boundary conditions are not accounted for, 
the stability theory of Eckhaus (1965) and Kogelman & Di Prima (1970) predicts that 
a band of wavenumbers of extent d will be stable above threshold (where E is the 
relative distance to threshold). When homogeneous boundary conditions are taken, 
i t  was shown that the band of allowed wavenumbers is generally of width O(e)  
(figure 3). Homogeneous boundary conditions can accommodate the complete 
vanishing of all perturbation fields, thus leading to a perfect bifurcation diagram ; 
inhomogeneous boundary conditions, such as those exemplified in Appendix A, 
impose a non-zero value on the perturbation fields or their spatial derivatives. 
Wavenumber selection with inhomogeneous boundary conditions was investigated 
by Cross et al. ( 1 9 8 3 ~ )  for the case where the magnitude of induced rolls on the 
boundary is small with respect to bulk roll motion. We are however interested in a 
different range of parameters, where the motion in the two regions is of comparable 
magnitude. 

I n  the present work, we are interested in the phenomena occurring in the range 
of validity of the ‘amplitude’ expansion of Segel (1969) and Newell & Whitehead 
(1969). We suppose that the flow is strictly 2-dimensional (or azimuthal) and that 
i t  consists in an approximately periodic motion. As the flow is two-dimensional, the 
validity of the amplitude expansion is not hindered by large-scale-motion effects 
discussed by Siggia & Zippelius (1981). 

2. The amplitude equation and its boundary conditions 
Let x be the horizontal direction perpendicular to the roll axis and z the vertical 

direction. This 2-dimensional roll system can be described in terms of a rapidly 
varying temperature perturbation 8 and a slowly varying amplitude A (figure 2). The 
latter is related to  the former by 

8(z, z )  = ~ [ A ( z ) f ( z ) e ” J c 5 + c . c . ] + 0 ( c ) ,  

where C.C. stands for complex conjugate and f is a real function. f ( z )  eiqcs+c.c. is the 
eigenmode of the linearized Oberbeck-Boussinesq equations a t  Ra = Rat, with the 
appropriate boundary for z = 0, 1 and for an infinitely extended geometry in the 
x-direction (qc is the critical wavenumber a t  onset). 

The amplitude expansion (Segel 1969; Newell & Whitehead 1969; Graham & 
Domaradzki 1983) results in the following equation: 

where 
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FIQURE 2. The slowly varying amplitude can be defined by its phase $ and its modulus \A\. The 
modulus (thin line) is the envelope of the rapidly varying perturbation, e.g. $(z) (thick line). The 
phase can be represented by the difference with the phase of a rapidly varying perturbation of 
critical wavenumber (dotted line). 

Equation (1) has been studied with various types of boundary conditions, which 
we shall discuss later. It can be put in a potential form 

FF 
FA 

TOAt = --, 

where 

and F/6A is the Frechet (functional) derivative. F is the potential of the space- 
dependent Ginzburg-Landau model. This equation has been proposed for several 
cellular instabilities. Recently, Normand (1984) proposed a similar equation (with 
different nonlinear terms) for convection in high cylindrical containers. Pfister & 
Rehberg (1981) proposed to describe the wavy mode in Taylor vortex flow by (1). In  
this latter case only real amplitudes A were considered. (But it is possible to have a 
complex amplitude if its phase is to represent the phase of the wavy mode in the 
azimuthal direction a t  height x.) 

A represents a slow modulation as 

A = O($) ,  A, = O ( e ) ,  etc. 

Solutions corresponding to a modulation of wavenumber q = qc+6 are readily 
obtained : 

A = A , ( E - [ : s ~ ) ~  exp [ i (J~+q5~)] ,  

(S( < [;1& 

( 2 )  

and the variation is again small: 

Thus a band of unstable wavenumbers of thickness of order E: is possible near 
threshold for steady patterns. The presence of homogeneous boundary conditions, 
i.e. A = 0,  restricts the allowed band to IS( = O(eCg1) (Pomeau & Zaleski 1981 ; Cross 
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FIGURE 3. Various stability and existence analyses are summarized on t,his diagram. The relative 
distance e to threshold is represented together with the wavenumber q of the solutions. In  region I 
the laminar or conducting state is stable. In  region 11 it  is unstable, for wavenumbers in a band 
of extent d around the critical one pc. The roll system itself can be unstable with respect to the 
Eckhaus instability : stable rolls are restricted to region 111. When boundary conditions are 
accounted for, and when the amplitude is correspondingly small on boundaries, the existing 
solutions (stable or unstable) are restricted to a band of extent O(e) ,  between lines (a). For 
inhomogeneous boundary conditions, i.e. A ( 0 )  = heirno, this band is broadened ( 6 ) .  Near threshold, 
its extent is h/1/2&,A0. Line (6) connects with the limit of Eckhaus-stable wavenumbers, which 
is shown to restrict further the band of solutions allowed by the boundaries. The width of the band 
is O ( d ) .  On the figure two orders of magnitude are represented: e x h and ei x A. Hence it only 
has a schematic character. The limits (b)  for allowed wavenumbers are computed in Appendix B. 

et al. 1983a). The exact computation of the bandwidth requires an amplitude 
equation a t  a higher order with respect to e, as also shown in Appendix B. Various 
wavelength-selection results are plotted on figure 3. 

The derivation of boundary conditions, when there is a small amount of forcing 
at the boundaries, is a rather tricky problem. It requires an asymptotic matching 
between two regions: a region of finite size near the lateral wall (or ‘outer region’) 
and the bulk region, or ‘inner region’ where the amplitude expansion holds. We 
describe this matching in Appendix A. A solution of the half-infinite linear problem 
is needed in the outer region. It is expanded in harmonic and exponentially decaying 
modes in the horizontal direction. In  the inner region, we make the usual amplitude 
expansion. Such a matching was done by Daniels (1977) for convection with free 
boundary conditions on the upper and lower plane, and with imperfect thermal lateral 
boundary conditions. They arise when some heat is assumed to flow through the 
endwalls. The existence of orthogonality relationships between the modes involved 
in the ‘outer ’ expansion greatly simplifies the derivation. Stewartson & Weinstein 
(1979) did similar computations for rigid horizontal and various lateral boundary 
conditions. Both papers derive the following boundary conditions : 

A = hei$o on the boundaries, (3) 
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where A ,  #, are some constants which are to  be computed from the exact physical 
boundary conditions on the sidewalls. I n  Appendix A we show how a similar 
boundary condition can be derived for the case of Boussinesq convection with 
rigid boundary conditions. The result should readily be extended to  free horizontal 
boundary conditions or to other problems. The main assumption is that  the amount 
of forcing, measured by A, is small. We find 

A + 6, A,  + 6, A,* = h ei@o + O(h2) .  

While doing so, we use some non-trivial orthogonality relations between the linear 
modes of the ‘rigid’ case. Those relations simplify the derivation of the boundary 
conditions, but are much more intricate than in the ‘free ’ case and were not employed 
in previous work. 

For the Taylorxouette problem the imperfection arises from the presence of rigid 
endcaps a t  the bottom (and sometimes a t  the top) of the fluid. Let u, v and w be the 
components of the velocity perturbations in the radial, azimuthal and vertical 
direction. (The amplitude expansion should now be made in the vertical direction.) 
The primary flow is the Couette flow, given by U = W = 0, V = A’r+ B’/r ,  where r 
is the radial coordinate and A’, B’ some constants. I n  the case of non-rotating 
endcaps, the end boundary conditions are 

u = w = O ,  v + V = O  a t z = O , L .  

Starting from these conditions, a matching similar to the one of Appendix A can 
formally be done. However, this matching requires V to  be small enough. Writing the 
‘outer’ expansion is then equivalent to finding the Ekman vortices near the endcaps 
by a weakly nonlinear expansion. It is difficult to estimate the merit of this expansion 
as the inhomogeneous term in the boundary condition is now O(1). Stewartson & 
Weinstein (1979), however, computed h and $o in (3) for various configurations of 
Taylor-Couette flow between concentric cylinders of almost equal angular velocity. 
Another approach is to compare (3) with the experimental findings. Snyder (1969) 
found that there was no variation of the size of the end vortices with the bulk 
wavenumber. This matches the fact that  (3) fixes the phase a t  the boundary. Another 
experimental fact is that  for Taylor-Couette flow the amplitude is larger at the 
boundaries than in the bulk. This gives a sufficient basis to  retain (3) as a model of 
the actual experimental situation. 

Half-infinite solutions can be obtained by considering only one boundary condition. 
A simple analysis of ( 1 )  (Cross et al. 1 9 8 3 ~ )  in the case E 6 h 4 A , d  shows that these 
solutions have their wavenumber still restricted to a small band : 

h 
Is’ < 4 2  6, A, 

For A = O ( d )  the problem has not been studied to our knowledge. We first extend 
the analysis of half-infinite solutions to this latter case. Then we consider the 
bifurcation diagram for large L, that  is AL/A,  6, p 1 .  Together with the assumption 
h = O(&),  this gives a somewhat different point of view compared to that of Cross 
et al. (1983~)  and Daniels (1977, 1978) (allowing us to find new bifurcating branches 
in finite geometries). We also discuss the ‘quantization’ of the solution and locate 
the possible defects. 
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3. Half-infinite solutions 
Let us consider a scaled version of (1 ). We define 

xi = A+Xzz-IA12A, 

- -1 It then follows that 

with the boundary condition x(0) = bei@O, 
(4) 

where b = h / A , d .  Hereinafter, we omit the overbars for simplicity. We look for 
stationary solutions of (4) in the region x > 0. Two invariant quantities (i.e. 
independent of x) can be built from such a solution A of (1) if A, = 0 (Newel1 & 
Whitehead 1969) 

E = $lAI2-’ 41~14+$IAx12~ 

K = $(AA,*-A*Ax), 

where A* denotes the complex conjugate of A .  These quantities are invariants of the 
‘motion’ with respect to  the space variable x for a stationary solution: 

- 0. 
d K  -=o ,  -- dE 

dx dx 

They are connected to invariants of higher-order amplitude equations as shown in 
Appendix B and by Pomeau, Zaleski & Manneville (1983). 

Consider now the modulus r and phase $ of A .  Then 

1 K 2  
E = $r2-ir4++E+-- 

Z r2 ’ 
K = r2$x. 

The variation of r in the x-variable can be described as the motion of a particle of 
abscissa r and energy E in the potential V K ( r )  (figure 5) : 

1 K 2  
E = $;+ V K ( r ) ,  with V,(r) = $r2-;r4+--- .  2 r2 

We look for solutions that are periodic in the limit x+m. For K =+ 0 solutions of (4) 
converge exponentially to periodic solutions : 

(6) A*( 1 - a2): ei(aX+h). 
X’Q) 

The rapid modulation corresponding to these solutions has a t  infinity a wavenumber 
q = qc + 6; da.  For such a solution, 

$s---+a, r------+(I -aZ);, 
X’OZ X’Q) 

2E = $(l -az) (1 + 3a2), K = (1 -az)  a. 

On the boundary, let us define c = rs(0), then from (5a )  and as r(0)  = b :  

rrZlb = 9’[b4 - 2b2 - 2c2 + 4 E ] .  (7)  

The wavenumber a is hence determined as a solution of a bicubic equation, once c 
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The two sides of (8) are maximal for a = I / d 3 .  This is precisely the value a t  which 
solutions of the form (8) are marginal with respect to the well-known Eckhaus 
instability. This remark can be used for instance in a graphic reasoning which would 
consist in looking for intersections of the graphs of the two sides of (8). From such 
a reasoning a = 1/2/3 is a t  least a double root of (8). This fact largely helps to 
compute and factorize the discriminant of (8). 

We find (after some lengthy computations) 

A = -+$b4[(b2-$)3-2~2b2], 

where A is the discriminant of the cubic equation for a2, normalized as in Abramowitz 
& Stegun (1968). Purely imaginary roots of (8) must also be excluded. Such roots 
appear pairwise for values of the parameter yielding the root a2 = 0. Substituting in 
(8) leaves 

The meaning of this relation is discussed below. 

( 1 - b 2 ) 2 - 2 ~ 2  = 0. (9) 

We now discuss the possible solutions, depending on the value of b2.  

3.1. Range 0 < b2 < $ 
A single type of solution is possible for this range of b. It corresponds to solutions 
that have a limit value of A larger than b (i.e. ~ A ( C O ) ~  > IA(O)l, see also figure 7 a ,  b ) .  
They correspond to a motion in the potential V described as follows: it starts to the 
left of the relative maximum S of V and reaches S asymptotically as X+GO 

(figure 5 b ) .  For b2 < 6 and c =I= 0, A is positive and there is only one pair of opposite 
roots +a for (8). For fixed b there is hence a one-to-one correspondence between 
the parameters c and a. 

Moreover, a increases with decreasing c. (This can be deduced for instance from 
the above-described graphic reasoning.) For c = 0 (8) is simply solvable. The roots 
are a, = f b/2/2 and a2 = & (1 - b2):. a2 corresponds to a particle motionless a t  the 
fixed point Q (i.e. relative minimum of V ) .  It corresponds to a solution likely to be 
unstable for b2 < $with respect to the Eckhaus instability. The root a, is the limiting 
value of the solutions for c + 0 and corresponds to the trajectories from P to S. This 
implies that for b2 < $ we recover the condition la1 < b / d 2 ,  that is 

h 
< d 2  [,,A,' 

Thus for sufficiently large h there is a band of selected wavenumber larger than 
the O ( E )  band expected for A = 0. This result is proved here for the case h = O ( E ~ ) .  

This type of solution matches with the solutions lying in the previously computed 
bands for b = AE-:A;~+O. For h = O ( E )  the O(e)  band can again be computed, as 
shown in Appendix B. The various allowed bands are summarized in figure 3. 

3.2. Range $ < b2 < 1 
The previous type of solutions still exists, but solutions with IA(c0)l < IA(0)l appear. 
They correspond to a motion in the potential V starting from a point T and reaching 
asymptotically the maximum S (figures 5b,  6a). When solving (8) to find such 
solutions, one has to eliminate spurious solutions of a particular type: they 
correspond to a motion starting from T with enough energy to reach the fixed point 
&, which, however, is separated from T by a potential barrier. The solutions a of (8) 
now span the whole Eckhaus-stable band. For c = 0 the corresponding solution is a 
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FIGURE 4. The set of allowed values for c = r,(O) is plotted versus b2 = IA(0)12. For small b there 
is a single solution of (8) in region I .  In region I1 two solutions are possible, in region 111 there 
is again only one solution. No solutions exist in region IV. The shape and wavenumber of the various 
solutions are discussed in the text. 

constant with a = a2 as defined above. It corresponds to a particle motionless at  
X on figure 5. 

3.3. Range b2 > 1 

For this range the solutions described in $3.1 disappear. There is again a one-to-one 
correspondence between c and a ,  with a varying in the whole band of Eckhaus-stable 
wavenum bers. 

3.4. Summary of results and singular behaviours 

The possible occurrence of various solutions has been represented on figure 4. The 
number of solutions is determined from the value of the discriminant A ,  and from 
the elimination of spurious solutions. Some of those, with a2 < 0, are located with 
the help of (9). They correspond to an exponential decay of A in the x-direction. Others 
are described in $3.2. Finally IA(.o)l < IA(O)( requires c < 0. Four regions in figure 4 
result. In  region 11, 2 roots of (8) are retained, whereas in region I and I11 only one 
has a physical meaning. In region IV  there is no solution. 

Several singular behaviours can be distinguished in the diagram of figure 4. On the 
lower boundary of regions I1 and I11 solutions appear marginally as LN trajectories 
in figure 5a. They converge algebraically to a marginally stable periodic pattern in 
the bulk. For b2 = $ and c = 0, a = l / d 3  is a triple root of (8). This latter solution 
should be worth further study, as its stability properties in finite length should also 
be very singular. These last two types of solutions can be expected to be marginally 
stable, as also appears from the analysis of the finite-length problem. 

To summarize our results, we have studied the various possible solutions and 
wavenumbers with respect to the boundary value b = IA(0)l. We related the 
wavenumber to the free parameter c = r,JO). This free parameter will be fixed when 
a second boundary is added. A finite number of solutions is then possible, through 
a 'quantization' condition of a sort that we shall study below. 
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4. Bifurcation of finite-length solutions 

conditions : 
We now proceed to the study of stationary solutions of (3) with the boundary 

A ( + l )  =be’@*, ( 1 1 )  

with b = h/A,d and 1 = l,/[ and where ( = go&-+ is the coherence length, 2L is the 
length of the domain and h is the modulus of the amplitude a t  the boundaries in the 
original equation. $+ is the phase on the boundaries. It is defined relatively to the 
phasc ofthe periotficrsolution of critical wavenumber qc (figure 2 )  and hence depends 
on the length L (see Appendix A, (A 23)). Solutions of (4) can be written as the inverse 
of simple elliptic integrals: the abscissa x ( r )  corresponding to a modulus r of the 
amplitude can be extracted from (5a ,  b) ,  and a similar operation gives the phase. In  
the simple case where r varies monotonically between its minimum value rm and its 
end values. one has 

~ ( x )  and $(x )  can hence be expressed with the help of elliptic functions, by inversion 
of (12a, b). The conditions ( 1 1 )  are then equivalent to the constraints arising from 
the boundary conditions 

b dr K d r  
= jrrn (2E- VK) i ’  rZ(2E- v# 

where Ad, = i(d,+ -$-). Thus the parameters E and K ,  which define the solutions, 
are related to 1 and A$, which are given by ( 1 1 ) .  To find solutions of this implicit 
system, we first expand the integrals (13a, b) in the limit of large 1. We then present 
numerical computations of solutions of the system (13a, b)  for finite and small 1. I n  
the following, analytical expansions were made only in the simple case where (12a) 
holds (i.c. with only one oscillation of r in the bulk). There should be no difficulty, 
however, in extending them to the general case. The contribution of additional 
oscillations is readily deduced from computations of Appendix C. 

4.1. Analytical expansion for large 1 
Taking a large value of 1 (i.c. L $ 6) implies that  the solution is close to two half-infinite 
ones glued together. Then for most solutions one has K < KEckhaus = 213 d3, and 
we can parametrize the solutions by an approximate wavenumber a. Let 
K = (1 - a z )  a (a is exponentially close to  the wavenumber of central rolls) and 
E = f( 1 -a’) (1 + 3a2) + 7 .  We further restrict the expansion to  the case b2 > 1 - a2. 
The sign of 7 then distinguishes two types of solution. For 7 < 0 we recover the usual 
pattern of the solutions of the amplitude equation, with a perfectly regular shape 
(figure 6 a ) .  For 7 > 0 the trajectory enters the region PQRS in figure 5 ( b ) .  In this 
region, the modulus of A is smaller than in the surrounding quasiperiodic regions 
(figure 5 b ,  6 b ,  c ) .  This corresponds to almost-stagnant fluid in a hydrodynamic 
instability, i.e. a region where roll motion is strongly damped. In  Appendix C we 
expand integrals (13a,  b) analytically, with respect to the small parameter 
7 = exp ( - 1 ) .  Similar expansions would give approximate solutions of (4) through 
cwmputation of (12a, b) .  



Cellular patterns with boundary forcing 

0 

1 1 1  

(a) 

L 
> 0 .  > 

FIGURE 6. The modulus r (2)  of stationary solutions of‘ (4). The dimensionless amplitude on 
boundaries is b = 2. (a )  A$ = 0. ( b )  A$ = 2. For larger A$, the solution sinks in the bulk until i t  
reaches zero in the centre. (c) A ‘kinked’ solution; such a solution is unstable. All solutions were 
drawn using numerical solutions of (13a,  6). 

In Appendix C we show, at first order, 

A$ = al+ I(a,  b, q ) ,  

1 - 3u2 b2 - 2a2 
I(a,  6 ,  q )  +I+ (a ,  b )  = rn, arctan __- arctan ___ 

a d2 a d 2  ’ - - 

FIGURE 5.  The potential V defined in text is plotted as a function of the modulus r = (Al. The 
solutions r ( 2 )  for a given value of the invariant K can be represented as motions in this potential. 
(a )  Marginal case: there is only one equilibrium point which corresponds to marginal stability of 
A@) .  ( b )  Generic case: the equilibrium point S corresponds to stable solutions and point 8 to 
unstable ones. Trajectories in this potential are described in the text. 
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IA  l p - q b )  1 

0 X 10 

FIGURE 7 .  Various symmetric solutions without ‘kinks’ in the bulk are plotted as 
obtained, forb < 1, by a numerical shooting method. In  all cases b w 0.5. 

lp--(c> 
IAl 

0 X 10 

FIQURE 8. Other types of solution for b < 1 : (a )  b = 0.5: a symmetric ‘kinked’ solution can be found 
to evolve from that in figure 6(c). (b)  b = 0.985: for b x 1, it  can also evolve to an asymmetric 
solution. (c) b = 0.5: for lower b the kink is located at boundaries. All figures are drawn from 
numerical solutions obtained by the shooting method. 

where m- = 1 and m+ = 2. The first term on the right-hand side of (14) is the bulk 
phase winding of periodic patterns with wavenumber a. I (a ,  b,  q )  represents the phase 
gained or lost in the boundary layers a t  the ends and/or in the centre. Figure 9 ( a )  
represents a as a function of this phase adjustment I+(a ,  b ) .  I n  an experiment, one 
would get a by a measurement of the bulk wavenumLer and A$ by measuring the 
overall number of oscillations, including the end ones. 
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The set of solutions of (4) is best understood by means of a graphic resolution (figure 
9a) .  It shows that the number of solutions grows like 

n=--- 21 2L €i 
n.d3-n.d3k-, 

and that solutions with 7 > 0 and 7 < 0 appear simultaneously. They hence have 
opposite stabilities. As there is an odd number of solutions with 7 < 0, and an even 
number of solution with 7 > 0, topological degree theory implies that  the former are 
stable and the latter unstable. Thus ‘kinks’ or ‘defects’ in the bulk are unstable. I n  
what follows, we investigate the immediate vicinity of the threshold and find a stable 
‘kinked’ solution in a particular case. 

4.2. Numerical computations 

To find solutions in the limit s + O ,  i.e. 1+0 and b+m, we performed numerical 
computations of the integrals (13a, b) .  For each value of A$ we find one or several 
possible values of the parameters E,  K and rm (b and 1 being held fixed). The solutions 
can be conveniently parametrized by K .  To understand the meaning of this 
parameter, consider ( 5 b ) :  K has the form of an angular momentum and represents 
the rapidity of the phase change (it varies monotonically with a far la1 d 1/2/3, so 
that a connection with previous results can easily be made). Close to the threshold, 
boundary layers have a thickness < of order d, as is well known from theory and 

FIQURE 9. Resolution of (13a,b)  ( a )  For large 1 an analytic expansion is made. The wavenumber 
a is related to 6 ) .  1- corresponds to short branches in the wavy pattern and I+ to  long ones. 
For A$ and 1 fixed the solutions lie at the crossing of the straight line I +  = A$-la and of the 
branches (a,  Z*). ‘Kinked’ solutions, corresponding to I = I+ and unkinked-(Z = I-) ones can thus 
be numbered. Numerical computations of I(a,  b ,  7) agree with analytical results very accurately: 
for 1 > 5 ,  points calculated numerically and analytically coincide on the figure. ( 6 )  For smaller 1,  
A$ was related numerically to K: for fixed b and 1, solutions lie on a curve in the (A$, K)-plane. 
Several such curves are represented for different values of 1. When 1 is small there is only one 
solution for fixed A#. When 1 increases, new solutions appear as the curve is folding. 
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FIGURE 10. The bifurcation diagrams near e = 6; L-2. The invariant K is chosen for parametri- 
zation as i t  measures the rapidity of phase change (see text). (For lower 2 the whole interval is 
invaded by boundary layers. Hence i t  does not make sense t o  consider the bulk ‘wavenumber’ of 
the solutions.) ( a )  The first mode has  N oscillations (branch A ) .  For larger B a solution with N+2 
modes bifurcates (branch R ) .  For even larger 6, i.e. forb  < 1, new solutions appear (figure 7 and 8) 
(branch C). ( b )  When L is larger the first mode has N+2 oscillations. ( e )  For a definite value of 
L,  the first mode is ‘kinked’ (branch B).  It bifurcates into solutions of N and N + 2 modes (branch A ) .  
(d )  In  experiments (Mullin 1982) the bifurcation of figure 10(e) is subcritical (full line). This 
lack of symmetry could be recovered if higher-order terms were kept in the amplitude expansion. 
Thus bifurcation diagrams (a ,  6 )  would also be modified (dotted line). 

experiments (Wesfreid et al. 1978). For K not too large the solution consists of two 
boundary layers, Y behaving like (in dimensionless units) 

1 
x+ 1 + b - l ‘  

r =  

This was already stressed by Graham & Domaradzki (1983). However, these authors 
neglected the b-l term, which is indeed small near threshold. 

The result of these computations was represented as a family of curves in the 
( K ,  A$)-plane (figure 9 b) .  Each curve is drawn for a fixed value of 1 and b. Each point 
on the curve corresponds to  a possible solution of system (13a, b) .  For small and 
large b, there is only one value of K for each A$. When 1 or b exceeds some critical 
value, there is a folding of the curve around the value A$ = IT, and a pair of new 
solutions appears (figure 9b). The bifurcation diagrams can be easily deduced, for 
various values of A$. 

For most values of A$ the bifurcation is of the ‘imperfect’ type (figure 1 ) .  The 
‘ secondary modes ’ correspond to those theoretically investigated by Schaeffer ( 1980) 
and observed by Mullin (1982). ‘Secondary modes’ are modes that do not bifurcate 
continuously from the basic solution existing for e < 0. They can be attained by 
first-order transitions (jumps) from other modes. 

The bifurcation diagrams (figure 10) involve modes with N and N + 2  waves. (For 
the sake of simplicity we have not represented the other possible secondary modes.) 
When L increases, A$ varies proportionally and all modes are shifted to the left of 
figure 10. For A$ = IT a perfect bifurcation is recovered. For A$ + n the first mode 
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in figure 10 has a shape depending on A#. I n  most cases this shape is intermediate 
between shapes ‘with’ or ‘without’ defect. 

For A# = n the first mode, existing a t  low values of E ,  is a ‘kinked’ mode with K = 0, 
and its amplitude goes to zero somewhere in the bulk. The kinked region is a 
remainder of the zero-amplitude region that exists for E < 0 outside the subcritical 
boundary layers. Such solutions have indeed been observed by Mullin (1982). 

However, our results differ from these observations in that we find no hysteresis. 
Indeed, hysteresis would result in an S-shaped bifurcation curve for the primary mode 
(figure 10d). As shown on this figure, this hysteretic behaviour breaks the symmetry 
between the Nand N +  2 modes. A simple argument shows that this behaviour cannot 
be deduced in the framework of the amplitude equation at lowest order. At this order 
the equations are symmetric with respect to the K+- K ,  #+-# transformation, i.e. 
the bifurcation diagrams of figure 6 (a)  must be perfectly symmetric. This symmetry 
is linked to  the symmetry with respect to  the addition or subtraction of a wave, i.e. 
with respect to the transformation S+-6 in ( 2 ) .  Only higher-order terms in the 
amplitude expansion can break this symmetry. 

4.3. Behaviour at larger values of E 

As already implied in $2, new solutions appear when b = (1  -a2)$. I n  dimensionalized 
variables this latter relation is equivalent to 

h = A,(€-  g; S2)k 

For E 2 3h2/2Ai all solutions have the boundary layers depicted in figures 7-8. 
Several oscillations are now possible in the PQRS region of figure 5 ( b ) ,  and a large 
variety of new solutions bifurcates. It is now possible that the kink previously located 
in the centre migrates to  the ends (figures S b ,  c) .  As b decreases, the kink is rapidly 
locked a t  a boundary. Such solutions are represented on the bifurcation diagram of 
figure lO(a). Their stability cannot be determined in a simple way. However, they 
are likely to be unstable, as in the limit h = 0 asymmetric solutions were shown to 
be unstable (Pomeau & Zaleski 1981 ; Daniels 1981). Solutions with more oscillations 
in the PQRS region also appear, and their linear stability again probably depends 
on their more or less symmetric character. Such a symmetric pattern is represented 
in figure 8 (a ) .  

5. Conclusion 
I n  conclusion we have observed some rather surprising features of the one- 

dimensional patterns, described by the amplitude equations near threshold. Although 
for half-infinite solutions the band of selected wavenumbers expands in a very simple 
way to  reach the Eckhaus-instability limit, the bifurcation of finite-length solutions 
appears rather intricate. For large LIE all existing stationary solutions are contained 
in the band of Eckhaus-stable periodic states. For smaller L, however, comparison 
with periodic solutions loses its meaning, and stable solutions with ‘kinks’ in the 
amplitude can be found. The existence of such solutions precisely allows us to match 
the phase throughout the domain. It is expected that such ‘kinks’ could be found 
in other situations where such a matching is necessary. Such solutions have been 
found in the experimental study of the buckling of thin elastic plates (Boucif, 
Wesfreid & Guyon, 1983 and private communication). They have also been observed 
in numerical simulations of asymmetric roll systems, where a phase matching is also 
necessary (Pomeau & Manneville, private communication). 

The effect of boundary conditions on mode selection is related to various other 
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effects in hydrodynamic instabilities. An important feature is the long time of 
relaxation to an equilibrium state. As shown in this paper, a marginally stable state 
can be approached in a t  least two ways: by forcing the system to get close to 
Eckhaus-unstable modes, or by getting close to the bifurcation point of figure 10 (d).  
I n  such situations the relaxation time might diverge or at least be far greater than 
the characteristic diffusion time across the cell, i.e. L2~,,/&,. 

The author wishes to  thank Y. Pomeau for suggesting to him the subject of this 
paper and for many helpful discussions. The author also benefited from many 
discussions with P. Manneville and J. E. Wesfreid. Part of this work was realized 
while the author was visiting the Department of Astronomy of Columbia University, 
with support from grant NSF Phy 80-23721, and also while the author was visiting 
the Laboratoire d’Hydrodynamique et de IClBcanique Physique, Paris, with support 
from the DRET. 

Appendix A. Inhomogeneous boundary conditions for the slowly 
varying amplitude 

The boundary conditions for the slowly varying amplitude are connected in this 
appendix to  the original two-dimensional flow equations. We specifically consider the 
Rayleigh-BBnard problem with solid (no-slip) boundary conditions. I n  what follows, 
we describe a matching between the bulk region of the convective layer, where the 
amplitude expansion holds, or ‘inner region’, and a region of finite size near the end 
walls, or ‘outer region’. 

A. 1. The Oberbeck-Boussinesq equations 

The basic equations for stationary convection in the Boussinesq approximation can 
be reduced to  the form 

where U is a vector of components (u, w,  8 ,  - p ) ,  L is the operator 

L U = N( U, U), (A 1 )  

and - uu, - wu, 

N ( U ,  V )  =(-uwiyw5). - ue;. - we, 

The rigid boundary conditions are 
u = w = e = o  f o r Z s - 1  I 

2, 2‘ 

u and w are the horizontal and vertical components of the velocity field, 8 is the 
temperature perturbation and p is the pressure. R, is the Rayleigh number. Boundary 
conditions on the lateral wall must come from an analysis of the heat equation in 
the endwalls. We somewhat simplify the problem by assuming a constant heat flux 
of small amplitude through a thin insulating rigid wall : 

u = w = 0, 0, = A,h(z )  a t  z = 0 , L ;  (A 3) 
here A, h(z) is some externally controlled heat flux. We take h($) = h( --$ = 0 for 
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consistency, and h = O(1). A, is a small scaling parameter. We assume h is smooth 
enough so that (A 1)-(A 3) has smooth solutions. 

A.2. Expansion of the outer solu,tions of the linear problem 

We consider now the linearized problem 

L U = O  (A 4) 

with boundary conditions (A 2) ,  and expand solutions in the form 

a, 

U(z,z) = C p, U,(z)eknr+c.c., 
n-o 

where kn,  p, are real or complex numbers, Un(z) are complex vector fields and C.C. 
stands for complex conjugate. The corresponding temperature perturbation and 
vertical velocity fields, chosen to have even symmetry in z ,  are of the form 

1 w = -R-2 Z ai(13;+k2)-l coshpiz e”, itl L1 
where (k2  +p2)3 - R, k2 = 0. The above expressions can satisfy the horizontal boundary 
conditions (A 2) only for a discrete set of values of k. Stewartson & Weinstein (1979) 
(hereinafter referred to as SW) computed the k, and the above eigenvalues up to 
n = 10, as well as their asymptotic forms for large n. For our approach it is useful 
to relate the U, to a 1-dimensional eigenvalue problem. Consider vector fields on 
(-t,  f) : 

Fn(z)  = fn , ( z )  > (A 6) i::::::) 
where the components are arbitrary functions of z on the interval (-$,$). The k, are 
related to eigenvalues of the problems 

1 i‘i -D6 -3D4+R, -3D2 

M R a =  0 0 

with D = d/dz, and the boundary conditions 

f a i  = f ; i , L  = 0 for I d i d 3, f 3 , i , , + f , i + l , z  = 0 for 1 < i d 2. ( A 8 )  

We also define a Hermitian product for vector fields of the form (A 6) : 
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A pseudoadjoint operator can be defined for this product, 

0 0  - D6 

M&,= 1 0 -3D4+R, , 

(0 1 -3D2 1 
and the adjoint problem reads 

with the boundary conditions 
M;, F i  = k: F,' 

f L i  = 0 for O < i < 3, 1 a t z = f + .  
Dji, = D2G3 = DYi, = OJ 

We now assume that the Fn are a basis for the Hilbert space of fields (A 6) with 
products (A 9). Then we can identify kn = k:, and we have the orthogonality 
relations 

for normalized eigenvectors. 

(A 10) (F,flF,) = ~,, 

The solutions of the auxiliary problem (A 6)-(A 8 )  are related to  (A 5) by 

(A 11)  1. 
Ri' k ~ ~ ( f n 2 ,  r+ fn l ,  23) 

- R,i(f,Z +f,l, 2) 
f n l  

-R;' k , z ( ~ 2  + kk) ~ n 2 ,  z +j,l, 23) 

PI U,(z) eiqc + c.c. 

i u n ( z )  = 

We need now more information about the solutions of (A 4) a t  the critical Rayleigh 
number Rat. The periodic solutions are well known (see for instance SW) : 

For R, > R,, the solutions with harmonic dependency in x take the form 

U(x,z) = PI U,(z)e"J~"+~,  Uz(z)ei*~z+c.c., 

where q l ,  q2 are two wavenumbers close to  qc,  and 

q]  = qc+'$'Ei+O(E), qz = q , - l y E i + O ( E ) ,  

u, ( 2 )  = UC( 2 )  + 6 -  ' U;( 2 )  + O( E ) ,  U,( 2 )  = Uc( 2 )  - e-  ' u; ( 2 )  + O( E )  . 
E are defined in the main text. Careful examination shows that Ul,2 vary 

continuously with ql , , ,  which justifies the above expansion. U; is then defined as 
follows : for R, > R,, we have the following solutions of (A 4) : 

[ U,( z )  ei*l - U 2 ( z )  eiqzz] 6-i. 

Assuming that Ul. , are properly normalized, we get in the limit of vanishing E the 
solution 

U(z, z )  = U'(x, z )  eiqcs, 

where 

Let F,, F; be the vector fields of the form (A 6) related to U,, U;, and 

U ( x ,  z )  = Uk(z) + g;1 zU,(z). 

Fz=lirn(F,+-FF,+)~-?; 
c+o 
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then 

At R, = R,, we must add U ( x ,  z )  to (A 5). We also assume that L is large enough 
so that exponentially growing modes can be eliminated. We keep only those modes 
with Re (k,) < 0, and relabel them : K ,  = k ,  for such modes. The outer solution then 
reads 

U(x,z) =PI Uc(z)eiQcZ+p; U'(x,z)ei*cz+ X p, U,(.z)eKnz+c.c. (A 13) 

We assume that the linear problem with inhomogeneous boundary conditions, i.e. 
(A 2)-(A 4), has a t  least one solution. At R, = R,, any of its solutions, say W), is 
the sum of an arbitrary solution of the inhomogeneous problem, say A1 U:), and of 
solutions of the linear homogeneous problem, i.e. ( A 2 ) ,  ( A 4 )  with boundary 
conditions 

00 

12-2 

u = w = O X = O  at x = 0 .  (A 14) 
The linear homogeneous problem has been well studied for finite length L. It has 

a one-dimensional space of solutions for some R,,(L) above Rac. When removing the 
second boundary at x = L to infinity, we want to keep only those solutions that are 
the limit (in some consistent sense) of solutions of the problem for finite length. Thus 
the half-infinite problem we consider has solutions depending on two parameters : 
their amplitude and their 'phase at infinity'. The solutions are the? in a two- 
dimensional space. 

Let Uz, , be two linearly independent solutions of this half-infinite problem. Then 

url) = A, up + A 2  Up + A, up, (A 15) 

where Az, , are two free real parameters. We use the scaling /Iz, = O(h,), Url) = O(h,). 
We need to express these solutions in the form (A 13) for the matching with the inner 
solution. We assumed the existence of the ql), and in what follows we shall assume 
they are given (they could be computed by numerical techniques). Let 0:') be the 
temperature perturbation associated with the above solutions. To relate i t  to the 
eigenvalue problem (A 7)  we define an auxiliary vector field Oi(x, z )  : 

e. = spls . 
a [:;:I 

Then from (A 10)-(A 13) we have for xo > 0 

Pi, = (Fpi(xo, .))eKnxo for n > 1, (A 16a)  

Re[(Pil+x0p~l)eiQc2~l = (F,+lo&o' - ) I ,  (A 16b) 

(A 16c) 

Applying (A 16) for a given value of xo leaves two free real parameters (they originate 
as above in the degeneracy of the linear problem). To determine these parameters, 
(A 16b,c) must be applied for another value of xo. This leads through (A 13) to a 
solution of (A 2)-(A 4) identical with w), with the Pn given by 

P n  = A1 P1n + A 2  P2n + 43 P3n. 
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For the asymptotic matching we shall require only the coefficient of U,(z) to be 
explicitly computed. I n  SW the P, were computed in a different way, using a 
colocation method to  match expansion (A 5 )  with the lateral boundary conditions. 
Although this method might be convenient for the computations, it is unclear how 
many free parameters are left in the resulting infinite algebraic system. 

A.3. Outer solutions of the nonlinear problem 

As W) is a good approximation to  the nonlinear problem, i t  can be used as the 
starting point of an expansion in powers of A,. I n  what follows we limit this expansion 
to second order. The solution of the nonlinear problem then reads: 

u = W +  ~ 2 )  + 0(~3), (A 17a) 

where u2) is determined by 

LU2) = N ( W ,  UQ). (A 17 b)  

Applying (A 3) to (A 17a) gives the boundary condition (A 14) for Uz). Urz) is then 
determined by (A 1 7 b )  up to the addition of an arbitrary solution of the linear 
homogeneous problem (A 2), (A 4), (A 14). 

To solve (A 17b)  we insert (A 13) in its right-hand side. The computations are a t  
this point complete analogues of those leading to the amplitude expansion (actually, 
A(%) Uc(z)ei*cz is the leading term in the amplitude expansion), and one gets a 
solution U’(z) of (A 176):  

U’(2)(x, z )  = P1,l U$4)1(z)e2iqc”+/3,, -l U$y)-l(z)+c.c. +n.h.t., 

where n.h.t. stands for non-harmonic terms (i.0. linearly growing and exponential), 
the Up)+I 3 -  are to be determined from U ,  only, and the coefficients are given by 

P1.1 = PlPP P1, -1 = PIP:, (A 18) 

To satisfy the boundary conditions one has to add a solution U“@) of the zeroth-order 
linear problem (A 4) such that 

UZ) = U’W+ U ” ( Z ) ,  L U ” ( 2 )  = 0, U ” ( Z ) ( O ,  z )  = - U ’ ( Z ) ( O ,  z ) .  (A 19) 

As before we have solutions of this problem in the form 

U ” ( Z )  = U;‘(Z) + A p  up + ALZ) up. 
U‘’@) is a particular solution of (A 19) and U$), U$$) are the above-defined solutions 
of (A 4)-(A 14). U”(z) scales as W2), and can be assumed to  be O(h;).  From the 
insertion of (A 18) in (A 19) we get an expansion for U”@) in the form (A 13): 

U ” ( z )  = U, ( ~ ) e ~ g c ~ + P i ( ~ )  U ‘ ( ~ , z ) e ~ g c ~ + n . h . t . ,  

where Piz), Pi@) are O(A;)  and can be computed from U”(@ in a way similar to the p,. 
However, as Ul), Vr;) already appear a t  first order in (A 17a), a normalization 
condition must be imposed on (A 17a). To be consistent with the inner expansion 
we chose to impose that P f )  = 0. This fixes A& and hence Pi@). 

A.4. Matching with the amplitude expansion 
It must be noticed that the amplitude expansion is similar a t  its two first stages to 
the previous one, but involves only the harmonic and linearly growing terms in the 
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x-direction. Without entering into the details of its derivation, we get the amplitude 
expansion : 

U(z ,  z )  = A(x )  U,(x) eiqc + to A,(z) Ui(x) eiqc 

+ A2(x) q ) , ( z )  e2iqcx+ IA2(x)l q ) - , ( z )  + O(A3)  +O(AA,) + O(eA) .  ( A  20) 

Notice that, near the boundary, A scales like A, and, if A, % d, A, scales like A: (see 
the boundary solution (15) in the main text). Matching the ‘outer’ expansion with 
(A 20) gives 

3 3 

Matching the higher-order terms in (A 20) gives expressions consistent with (A 18). 
From (A21)  the parameters A,, A, can be eliminated, yielding the boundary 
conditions : 

A+&A,+c,A,* = hei$o+O(h2) 

a t  x = 0, where A,  40, t,, c, are some real coefficients, and A = O(A,). For A, = O(e.f) 
one gets at first order: 

A(0) = A ei$o + O(A2).  

If A, = U ( e )  the inner expansion gives A,  = O ( E ) ,  and the boundary condition is 

A+&A,+C,A,* = Aei#o+0(e2). (A 22) 

As symmetrical boundary conditions are imposed at x = L ( A  3 ) ,  this results in iden- 
tical boundary conditions for A eiQc ( L - x ) ,  as can be seen from the definition of A : 

A(L)  = Aei(qcL-90). 

The phase difference Aq5 across the interval ( - L,  L )  defined in the main text is then 

A$ = 2q, L-24,. (A 23) 

Appendix B. Wavenumber selection for small boundary forcing 
We consider the case where the forcing is small, i.e. A 6 e;. The proposed method 

is new and applicable also for A = 0. Our starting point for investigating wavenumber 
selection is the second-order stationary amplitude equation. Such an  equation can 
be derived under the same assumptions as the first-order amplitude equation (1). It 
cannot be made two-dimensional in many problems, owing to non-local contributions 
(Siggia & Zippelius 1981). However, we are not bothered by this problem for the 
1 -dimensional amplitude equation. This stationary amplitude equation is 

+ ig, €A,  + ig, IAI2 A,  + ig, A,* A2 = 0. 
PI2 A 

A: 
EA +ti A,, -- 

We consider this equation together with the boundary conditions (A 22) .  Terms of 
the form JAI4 are excluded by symmetry arguments: (B 1) should be invariant under 
the change A + -  A .  The absence of terms of the form Ax3 needs some explanation. 
A trivial way to derive an amplitude equation O(e2)  is to take the derivative of (1). 
Thus there are actually two equations 0 ( e 2 )  and they can be suitably combined to 
give (B 1). Further, the absence of the A,s-term allows compatibility with the 
number of boundary conditions : one condition at every boundary fits a second-order 
differential equation, not a third-order one. 
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Multiplying (B 1) by -iA* and adding the complex conjugate leads to an 
expression of the form 

d K  1- 
dx - 0, 

where 

K ,  is related to the invariant K of (1 )  : 

K ,  = *it:( AA,* - A  *A,) + $(g, + g3) IAI4 + h1 e IAI'. (B 2 )  

iC: K = K, + O(e2). 

Multiplying (B I)  by A and adding the C . C .  leads to 

3 = ig3A~xA~A12+c.c. ,  (B 3) dx 

1 1 4 4  where 

However, from (l) ,  

E, = i e  I A1 - - - + I A,( + ;is3( A A,* - A *A,) 1 A 1,. 4 At 

A,, = 5;"( - C A + ~ ) + O ( E ~ ) .  MI2 A 
A0 

By substituting in (B 3), one gets a t  the relevant order 

dE1 - = 0. 
dx 

K, and El can be estimated easily away from the boundaries, using (2) and assuming 

E 1 - - 12A2 4e 0 '  (B 5 b )  
Estimation of K,  on the boundary is slightly more subtle. As shown in Appendix A, 
two parameters remain free a t  the boundary. We choose them to be 

c = IA,(O)l, 8 = arg (AJO)).  

As (A(O)( Q €4, the estimation of Ellb is easy: 

Ellb = g: c2. 

A,(O) = ~ 

2/2 to 

Equating with (B 5 b )  gives finally 
AOe . 

Replacing in (A 22) gives 

From (B 2) 
A(())  = he'AJ-- (6, eie + C, e-is). 

4 2  t o  
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From (B 8), the precise bounds for 6 can be derived, knowing all the constants gj, 
5, A, $,, A ,  and e. (In the general case, this requires the resolution of a fourth-order 
algebraic equation.) Moreover, 8 is a periodic function of 0 with period 2x.  For h < e 
this can be observed as a slight splitting in two of the extrema for 6, as obtained when 
scanning the set of stable modes. 

We now apply those results to the following model, introduced by Lange & Newel1 
(1971) : 

Stationary solutions are investigated with boundary conditions modelling inhomo- 
geneous forcing, i.e. 

k C Z = h ,  $ = 0  f o r x = f L .  

The boundary conditions on the slowly varying amplitude are then 

ReA = 0, 

q, IrnA+ReA, = A )  
'1 f o r x = f L ,  

or else 
1 ih 

A--&+A,*) 29, = - qo f o r x = f L .  

The stationary amplitude equation is easy to derive, owing to the simplicity of the 
nonlinear term in the above model: 

eA +4$, A,, - f  IAI2 A - i d ,  +%i (AI2 A,+ fiA,* A2 = 0. 

There results 

K=$e(sq,'+16q:S), KO =~(hq ,e . \ / 6cos0+q ,1e2cos20) ,  

6- < 6 < s,, 

with 

These results are plotted on figure 3. 

Appendix C. Computation of finite-length solutions 
The integral (13a) can be rewritten in the form 

where K =  (1 -u2)a ,  E = + ( l - a 2 ) ( 1 + 3 a 2 ) + ~ .  

The denominator in (C 1) has the roots 

2 4 2  a 
r2 = 4 2 a - p  

1 - 3a2 71'' 

5 FLM 149 
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For 7 > 0 and at lowest order in 7 this integral can be expressed as 

bZ du 
= 2-: Jrh (u-2a2)1 [ ( u - d  + 1 ) 2  + 7( 1 - 3a2)-2]:' 

Moreover, as rz = 0 for r = r,, rm is a root of the denominator. Examination of 
motion in the potential V (figure 5 b )  gives r ,  = r2.  The leading contribution to (C 2) 
comes for u N 1 -a2. Integrating in this region gives 

2-1 7( 1 - u 2 ) 2  

1-3a2 . 1 =  
(1  - 3 4  

For 7 < 0, r ,  = rl+,  and we get in a similar way 

v/l( 1 - d y  
1 = 2-f( 1 - 3a2)-: Log 

1-3a2 ' 

To compute (13b),  we extract from A$ its bulk part, proportional to al. There results 

A$-uE =I(a,b,v/l) ,  

where 
-a(% - ul) du 

u(u-u,)i [(U-U1)2+a"]t' 
I ( a ,  b ,  7) = 2-i 

The main contribution to the integral is now outside the region u z ul, and 

= 2F(u,) -F(b2)-F(r&) ,  

where 

According to the sign of 7, r& = u2 or ul, which gives (14) in the main text. 
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